\(\ds \frac {1}{6}+\frac {1}{2} =\answer {\frac {2}{3}}\)
\(\ds \frac {1}{6}+\frac {1}{2}= \frac {1}{6}+\frac {3}{6}= \frac {4}{6}= \frac {2}{3} \)
\(\ds \frac {2}{9}-\frac {1}{6} = \answer {\frac {1}{18}}\)
\(\ds \frac {2}{9}-\frac {1}{6}= \frac {4}{18}-\frac {3}{18}= \frac {1}{18}\)
\(\ds \frac {1}{3}-\frac {1}{9}+\frac {2}{27} = \answer {\frac {8}{27}}\)
\(\ds \frac {1}{3}-\frac {1}{9}+\frac {2}{27}= \frac {9}{27}-\frac {3}{27}+ \frac {2}{27}= \frac {8}{27}\)
\(\ds \frac {2}{3} \cdot \frac {5}{7} = \answer {\frac {10}{21}}\)
\(\ds \frac {2}{3} \cdot \frac {5}{7} =\frac {10}{21}\)
\(\ds \frac {15}{6} \cdot \frac {3}{2} = \answer {\frac {15}{4}}\)
\(\ds \frac {15}{6} \cdot \frac {3}{2} = \frac {5}{2} \cdot \frac {3}{2}= \frac {15}{4}\)
\(\ds \frac {2}{5} \cdot \frac {9}{22} \cdot \frac {4}{18} = \answer {\frac {2}{55}}\)
\(\ds \frac {2}{5} \cdot \frac {9}{22} \cdot \frac {4}{18} = \frac {\cancel {2}^1 \cdot \cancel {9}^1 \cdot 2}{5 \cdot \cancel {22}_{11} \cdot \cancel {9}_1} = \frac {2}{55}\)
\(\ds \frac {6}{5} : \frac {2}{15} = \answer {9}\)
\(\ds \frac {6}{5} : \frac {2}{15} = \frac {6}{5} \cdot \frac {15}{2}= \frac {\cancel {6}^3 \cdot \cancel {15}^3}{\cancel {5}_1\cdot \cancel {2}_1}= \frac {9}{1}=9\)
\(\ds \frac {12}{25} : \frac {18}{35} = \answer {\frac {14}{15}}\)
\(\ds \frac {12}{25} : \frac {18}{35} = \frac {12}{25} \cdot \frac {35}{18}=\frac {\cancel {12}^2\cdot \cancel {35}^7}{\cancel {25}_5 \cdot \cancel {18}_3} = \frac {14}{15}\)
\(\ds \frac {\frac {1}{4}}{\frac {3}{2}} = \answer {\frac {1}{6}}\)
\(\ds \frac {\frac {1}{4}}{\frac {3}{2}}= \frac {1}{4} : \frac {3}{2}= \frac {1}{4} \cdot \frac {2}{3} = \frac {1}{6}\)
\(\ds \frac {\frac {1}{2}+\frac {1}{4}}{\frac {1}{6}+\frac {1}{3}} = \answer {\frac {3}{2}}\)
\(\ds \frac {\frac {1}{2}+\frac {1}{4}}{\frac {1}{6}+\frac {1}{3}}= \frac {\frac {2+1}{4}}{\frac {1+2}{6}}=\frac {\frac {3}{4}}{\frac {3}{6}}= \frac {3}{4} \cdot \frac {6}{3}= \frac {3}{2} \)
