Vereenvoudig indien mogelijk.
\( \frac {x^2 - y^2} {x - y} = \answer [onlineshowanswerbutton]{x + y } \)
\( \frac {x^2 + 2x + 1} {x^2 - 1} = \answer [onlineshowanswerbutton]{\frac {x + 1}{x - 1} } \)
\( \frac {a^2 - 9} {a^2 - 6a + 9} = \answer [onlineshowanswerbutton]{\frac {a + 3}{a - 3} } \)
\( \frac {x^4 - a^4} {x^2 - a^2} = \answer [onlineshowanswerbutton]{x^2 + a^2 } \)
\( \frac {2x^2 - 5x + 3} {-4x^2 + 8x - 3} = \answer [onlineshowanswerbutton]{\frac {1 - x}{2x - 1} } \)
Pas eerst (kruisgewijs) vereenvoudigen toe vooraleer de breuken te vermenigvuldigen.
\( \frac {3(a - b)} {a(a + b)} \cdot \frac {a^2} {9(a - b)} = \answer [onlineshowanswerbutton]{\frac {a}{3a + 3b} } \)
\( \frac {(x + 3)^2} {(x + 3)(x - 2)} \cdot \frac {x + 1} {x + 3} = \answer [onlineshowanswerbutton]{\frac {x + 1}{x - 2} } \)
\( \frac {(x + 1)(x - 2)} {x^2 (x + 3)} \cdot \frac {x^2} {(x - 3)(x + 1)} = \answer [onlineshowanswerbutton]{\frac {x - 2}{x^2 - 9} } \)
\( \frac {4(x - 2)} {10(x + 2)^2} \cdot \frac {15(x + 2)} {2(x - 1)} = \answer [onlineshowanswerbutton]{\frac {x - 2}{x^2 + x - 2} } \)
\( \frac {6a^3} {a + 4} \cdot \frac {(a + 4)^2} {24a^2} = \answer [onlineshowanswerbutton]{\frac {1}{4} a(a + 4)} \)